Waves are \qquad and they \& information over great distances

The energy of a wave is \qquad to its frequency.

Fast oscillation $=$ high frequency $=$ Slow oscillation = low frequency =
\qquad
\square
The \qquad is a measure of the wave intensity.

- SOUND: amplitude corresponds to
- LIGHT: amplitude corresponds to \qquad

The illustration below shows a series of transverse waves. Label each part in the space provided.
a. \qquad
b. \qquad
C. \qquad
d. \qquad

e. \qquad
f. \qquad
g. Average line

$$
\begin{array}{ll}
& V= \\
\mathbf{V}=\lambda \mathbf{f} & \begin{array}{l}
\lambda= \\
\mathbf{f}=
\end{array}
\end{array}
$$

The wavelength of a sound wave in this room is 1.13 m and the frequency is 301 Hz . What is the speed of the wave in the room?

Consider a wave generator that produces 12 pulses per second (a frequency of 12 Hertz). The speed of the waves is $3 \mathrm{~m} / \mathrm{s}$. What is the wavelength of the waves?

Sally Sue, an enthusiastic physics student enjoyed the opportunity to collect data from standing waves in a spring. She and her partner held the ends of their spring 4.00 meters apart to create a wave. Their wave's speed was $20 \mathrm{~m} / \mathrm{s}$. What is the wave's frequency?

Wave Trains

a) How many waves are there in this wave train? \qquad

b) How many waves are there in this wave train? \qquad

c) How many waves are there in this wave train? \qquad

