Objectives:

- > Define the following terms:
 - Distance
 - Displacement
 - \circ Speed
 - Velocity
 - Acceleration
 - Inertia
 - Force
 - Net force
 - Free body diagram
- > Explain the implications of the following models
 - constant velocity motion
 - constant acceleration motion
 - Tension
 - Normal force
 - frictional force
- > Give real-world examples of the following
 - constant velocity motion
 - constant acceleration motion
- > Describe motion using various representations
 - Written or oral description
 - Position vs. time graph
 - Velocity vs. time graph
 - Motion map
- > Find slope and vertical intercept of a line
- > Explain the physical significance of slope and vertical intercept on the following graphs
 - position vs. time
 - velocity vs. time
- > Determine the following from a *position* vs. *time* graph
 - starting position
 - position at any specified time
 - o distance traveled during specified time interval
 - displacement during specified time interval
 - speed at specific time
 - average speed during specified time interval
 - velocity at specific time
 - average velocity during specified time interval
 - sign (+ or -) of acceleration
- > Determine the following from a *velocity* vs. *time* graph
 - displacement during specified time interval
 - starting velocity
 - velocity at any specified time
 - acceleration
- > Explain significance of intersection of two curves lines on the following graphs
 - position vs. time
 - velocity vs. time
- > Explain what the area under a *velocity* vs. *time* graph represents
- Articulate the conditions on sign (+ or -) of velocity and sign (+ or -) of acceleration for increasing and decreasing speed
- > Solve a variety of qualitative and quantitative problems associated with describing motion
- State and apply Newton's Second Law
- Draw free body diagrams (FBDs) for assorted situations
- > Determine resultant (net) force when multiple forces act on a single object

Unit 1A Objectives Mechanical Energy